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ABSTRACT

We present X-ray light curves for the cataclysmic variable EX Hydrae ob-

tained with the Chandra High Energy Transmission Grating Spectrometer and

the Extreme Ultraviolet Explorer Deep Survey photometer. We confirm earlier

results on the shape and amplitude of the binary light curve and discuss a new

feature: the phase of the minimum in the binary light curve, associated with

absorption by the bulge on the accretion disk, increases with wavelength. We

discuss several scenarios that could account for this trend and conclude that,

most likely, the ionization state of the bulge gas is not constant, but rather de-

creases with binary phase. We also conclude that photoionization of the bulge by

radiation originating from the white dwarf is not the main source of ionization,

but that it is heated by shocks originating from the interaction between the in-

flowing material from the companion and the accretion disk. The findings in this

paper provide a strong test for accretion disk models in close binary systems.

Subject headings: novae, cataclysmic variables—stars: individual (EX Hydrae)—

X-ray: stars
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1. Introduction

Cataclysmic variables (CVs) are semi-detached, interacting binaries consisting of a white

dwarf and a late-type star (hereafter, the companion) that overflows its Roche Lobe. In most

cases the overflowing material settles into a disk around the white dwarf before accreting onto

its surface. At the point where the stream of material from the companion collides/interacts

with the accretion disk a “hot-spot” or “bulge” forms. Much of our understanding of the

three-dimensional structure of CV disks has been obtained from studying their light curves;

for CVs seen nearly edge-on, light curves show broad modulations (either in emission or

absorption, depending on the wavelength regime) and deep eclipses. The broad modulation

is due to the hot-spot orbiting with the binary system and the eclipses are due to occultation

of the white dwarf and/or hot-spot by the companion (see e.g., Wood et al. 1986).

A subset of the CVs, the so-called magnetic CVs, contain white dwarfs with magnetic

fields that are sufficiently strong to force the accreting material away from the orbital plane

of the binary and onto one or both of the white dwarf’s magnetic poles. The accreting

material approaches the white dwarf supersonically and so passes through a stand-off shock

before cooling and settling onto the surface of the white dwarf (Aizu 1973; Kylafis & Lamb

1982). The material in the shock is hot (∼ 10–100 keV), so magnetic CVs are powerful X-ray

sources. Magnetic CVs are divided into two subclasses: polars and intermediate polars (IPs).

In polars the stars are tidally locked; this “static” configuration results in an accretion flow

from the inner Lagrangian point of the binary along the magnetic field lines of the white

dwarf onto its magnetic pole(s). In IPs, where the white dwarf is spinning faster than the

orbital period, matter also accretes onto the white dwarf along the magnetic field lines, but

it first accumulates in an accretion disk surrounding the white dwarf.

In this paper we discuss the X-ray light curves of the IP EX Hydrae (hereafter, EX Hya)

obtained with the Chandra X-ray Observatory (Chandra) High Energy Transmission Grating

(HETG) spectrometer and the Extreme Ultraviolet Explorer (EUVE ) Deep Survey (DS)

photometer. EX Hya consists of a 0.49±0.13 M� white dwarf with a spin/rotation period of

67 minutes and a 0.078 ± 0.014 M� companion (Fujimoto & Ishida 1997; Beuermann et al.

2003; Hoogerwerf, Brickhouse, & Mauche 2004). The binary system has an orbital period of

98 minutes and an inclination i = 77◦. EX Hya light curves have been studied extensively in

the optical (e.g., Vogt, Krzeminski, & Sterken 1980; Sterken et al. 1983), UV (e.g., Mauche

1999; Belle et al. 2003), EUV (e.g., Hurwitz et al. 1997; Belle et al. 2002), and X-rays (e.g.,

Rosen, Mason, & Córdova 1988; Allan, Hellier, & Beardmore 1998).

The X-ray white dwarf light curve, i.e., the observed flux as a function of the white dwarf

spin phase (hereafter φ67) shows a broad sinusoidal modulation that peaks around φ67 ≈ 1.0.

Its amplitude increases with increasing wavelength of the emission. Two origins have been
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suggested for this broad modulation. One is the “accretion curtain” model (Rosen et al.

1988), in which the pre-shock material absorbs emission created in the post-shock region.

Since the pre-shock material is confined to the magnetic field, its projected column density

changes as the white dwarf rotates, hence the amount of absorption varies (see figures 7 and

8 of Rosen et al. 1988). The other is the occultation model (e.g., Allan et al. 1998; Mukai

1999), in which the φ67 modulation is due to occultation of the emission by the limb of the

white dwarf.

The X-ray binary light curve of EX Hya, i.e., the observed flux as a function of binary

phase (hereafter φ98), shows two main features: a broad modulation, thought to be due to

photoelectric absorption of white dwarf and accretion column emission by the hot spot or

bulge material on the accretion disk, and a sharp partial eclipse, due to the occultation of

the lower accretion pole of the white dwarf by the companion (see e.g., Rosen et al. 1988;

Mukai et al. 1998).

This paper focuses on the binary light curve using data obtained with Chandra and

EUVE and is organized as follows: § 2 describes the data and the construction of the light

curves, § 3 presents the binary light curves and a model for the accretion disk bulge, § 4

discusses the results, and § 5 presents the conclusions.

2. Observations and Reduction

Chandra

EX Hya was observed by Chandra using the HETG in combination with the Advanced CCD

Imaging Spectrometer in its spectroscopy layout (ACIS-S) on 2000 May 18 for 60 ks. The

observation was continuous and covers ∼ 10 orbital revolutions of the binary system and

∼ 15 rotations of the white dwarf. We reduced the data using the Chandra Interactive

Analysis of Observations (CIAO version 3.0) software package1, making only two departures

from the standard reduction: (1) we turned randomization off to minimize any artificial line

broadening (i.e., we set rand pix size equal to zero in the tg resolve events tool; note that

in CIAO version 3.1 and later rand pix size = 0 is the default setting), and (2) we applied

a solar system barycentric correction so that the event times are in Barycentric Dynamical

Time instead of spacecraft time.

Light curves were constructed using the CIAO tool dmextract . We note that since the

1http://cxc.harvard.edu/ciao/
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HETG grating spectra span several CCDs on the ACIS detector, it is recommended in the

dmextract documentation2 that light curves be extracted for each CCD individually so that

the correct Good Time Interval (GTI) table for each CCD is used (the GTIs usually differ

from CCD to CCD). The individual CCD light curves can then be combined to form the

correct light curve, for example, a spectral order light curve. For the EX Hya observation,

the GTIs for ACIS CCDs #4 through #9 differed by less than 6.6 s, or ∼ 0.01% of the 60 ks

integration time, so we chose to ignore this small difference and extract the light curves for

spectral orders spanning several CCDs in the same extraction (in this case the first GTI table

available to dmextract is used, i.e., the CCD #7 GTI, which contains the zeroth order).

We generated light curves for the combined first orders of the High Energy Grating

(HEG) and Medium Energy Grating (MEG) as a function of binary phase φ98 for the optical

ephemeris of Hellier & Sproats (1992). Furthermore, we created light curves for the following

wavelength intervals: 1–5 Å, 5–10 Å, 10–15 Å, and 15–20 Å. In the remainder of this paper

we refer to these light curves as £(λ), where λ indicates the wavelength range.

We also generated light curves for the HETG background and conclude that they are

constant with time and account for less than 0.4% of the signal in the source light curves.

EUVE

EX Hya was observed by EUVE (Bowyer & Malina 1992; Bowyer et al. 1994) between 2000

May 2 and 2000 June 15. The data were extracted from the HEASARC3 data archive in

the form of 11 FITS-format events files, which were manipulated with custom IDL software

developed over many years of EUVE observations of cataclysmic variables (see Mauche 2002,

and references therein). Source counts were collected from a 2 arcmin radius circle centered

on EX Hya, while background counts were collected from a surrounding annulus having an

inner radius of 3 arcmin and an outer radius of 5.385 arcmin (such that the ratio of source

to background areas was 1:5). After discarding numerous short (∆t < 100 s) data intervals

comprising less than 1% of the total exposure, we “manually” adjusted the start and stop

times of the nominal good time intervals to include only those times when the source was

above Earth’s limb and the background and primbsch/deadtime correction was low. This

filtering resulted in 719 good time intervals for a total exposure of 967 ks. Event times

were corrected from spacecraft time to HJD, HJD was converted to binary phase using the

ephemeris of Hellier & Sproats (1992), phase-folded source S, background B, and primbsch-

2http://cxc.harvard.edu/ciao/why/lightcurve.html

3http://heasarc.gsfc.nasa.gov
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weighted exposure ∆t light curves were accumulated, and the background-subtracted light

curves and errors were calculated as (S − B/5)/∆t and
√

(S + B/25)/∆t, respectively.

3. Binary Light Curve

Figure 1 shows the Chandra light curves of EX Hya folded on the binary phase. A

narrow partial eclipse is visible around φ98 = 1.0, as is the broad modulation centered on

φ98 ∼ 0.8. We discuss the eclipse and the broad modulation separately in the following two

sections.

3.1. Eclipse

We measured the position and duration of the eclipse by fitting £(λ) for φ98 ∈ [0.9, 1.1],

using 10 s bins (or 0.0017 in φ98), with a second-order polynomial to represent the overall

shape of the light curve, and a Gaussian to represent the eclipse (note that the bins used

for the fit are much smaller than those shown in Fig. 1). We found for £(1–20 Å) that the

eclipse is centered on φ98 = 0.9947±0.0009, which is slightly (31 s) before the time of eclipse

predicted by the ephemeris of Hellier & Sproats (1992), but well within its errors (σφ98 =

±0.012 at the time of the observation). The eclipse has a FWHM of (0.024 ± 0.002) × φ98

or 141 ± 12 s, and has an eclipse deficit4 of 12.8% ± 0.4%. We find no evidence, at the

2σ level, for any dependence of the time of eclipse, its width, or its deficit with wavelength

(see Table 1). The FWHM of the eclipse is in good agreement with the measurement by

Mukai et al. (1998) of 157 ± 4 s based on 49 eclipses observed with RXTE . Furthermore,

the eclipse deficit obtained from the Chandra data is in rough agreement with that obtained

from EXOSAT , 20±4% (for the 1.5–3 keV band; Rosen et al. 1988) and Ginga, 18.2±1.7%

(for the 1.7–2.8 keV band; Rosen et al. 1991).

3.2. Bulge dip

The broad modulation in the EX Hya binary light curve is thought to be due to absorp-

tion by the hot spot or bulge on the accretion disk. In our first attempt to describe the broad

4The eclipse deficit is defined by Rosen et al. (1988) as the total count rate during the eclipse, defined as

2 times the FWHM, compared to the count rate in two adjoining regions, each one FWHM wide, on either

side of the eclipse.
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modulation, we modeled the light curves assuming a constant count rate and two Gaussians:

a narrow one centered on φ98 ∼ 1 representing the eclipse discussed in the previous section,

and a broad one centered on φ98 ∼ 0.8 representing the broad modulation. Table 1 lists the

centroids, FWHM, and depth of the Gaussian fit to the broad modulation and the fits are

shown in Figure 1.

As has been reported before (e.g., Rosen et al. 1991; Allan et al. 1998), the depth of

the broad modulation becomes more pronounced for the longer wavelengths. However, we

also find that the phase of the minimum of the broad modulation changes with wavelength.

Both of these trends continue into the EUV wavelength band, as can be seen from Figures 2

and 3, which show the Chandra HETG £(1–5 Å), £(5–10 Å), £(10–15 Å), and £(15–20 Å)

light curves and the EUVE DS £(70–180 Å) light curve. We argue below that the shift in

the phase of the minimum of the broad modulation (hereafter φ98,min) with wavelength from

X-rays to the EUV is most likely due to a variation with φ98 in the photoelectric absorption

characteristics of the absorbing material.

3.3. Modeling the Bulge Dip

In the following, we assume that the bulge dip can be modeled by a single column

density that fully covers the source of X-ray and EUV light. In this case, the observed count

rate C(λ, φ98) can be written as:

C(λ, φ98) = F̄0(λ) exp

[

−NH(φ98)

28
∑

i=1

Ai

i
∑

j=1

σij(λ)Iij(φ98)

]

, (1)

where F̄0(λ) = F0(λ) ARF (λ), F0(λ) is the flux (in photons cm−2 s−1 Å−1) of the source

before it passes through the absorber, ARF (λ) is the effective area of the instrument (in

cm2), NH(φ98) is the H column density (in cm−2), Ai is the fractional abundance of element i

relative to H, and Iij(φ98) and σij(λ) are respectively the ionization fraction and photoelectric

cross section of ion j of element i. We assume that the source spectrum is constant with φ98,

that the abundances are solar (Grevesse & Anders 1998), and that the photoelectric cross

sections are as given by Verner & Yakovlev (1995). With these assumptions, variations in

C(λ, φ98) with φ98 can be due to changes in the column density and/or the ionization state

of the absorbing material.

To investigate the hypothesis that a changing ionization state could produce the EX Hya

light curves, we consider two physical processes that affect the ionization state of the ab-

sorbing material: collisional ionization (CI) and photoionization (PI). For both processes we

assume that the absorber is optically thin and has a homogeneous ionization balance (but
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see § 3.4). With these assumptions, the ionization balance is given for CI by the temperature

T and for PI by the ionization parameter ξ = L/nR2, where L is the luminosity (in erg s−1),

n is the H density (in cm−3), and R is the separation between the absorber and the source

of the ionizing radiation (in cm). In the CI case, we assume that the ionization fractions are

as given by Mazzotta et el. (1998) as a function of T (φ98). In the PI case, we calculated the

ionization fractions with the CLOUDY photoionization code (Ferland 1996) as a function of

ξ(φ98).

In addition to L, n, and R, it is necessary in CLOUDY to specify the shape of the ionizing

spectrum. For this, we used a combination of (1) a multi-temperature APEC (Smith et al.

2001) thermal plasma model fit to the Chandra data, representing the emission from the

accretion columns, (2) a blackbody spectrum to represent the white dwarf surface (radius

R = 109 cm and temperature T = 10000 K, Eisenbart et al. 2002), and (3) a blackbody

spectrum to represent the portion of the white dwarf surface that is heated by emission from

the accretion columns (effective radius R = 6 × 108 cm and temperature T = 25000 K,

Eisenbart et al. 2002). We thus assume that the absorber is photoionized from only one side

by the white dwarf and accretion columns. The ionizing radiation from the disk and the

companion are negligible and can be ignored.

To determine the spectral shape in the Chandra wavelength band, we fitted the APEC

model to the part of the observation least affected by absorption, i.e., φ67 ∈ [0.9, 1.3] and

φ98 ∈ [1.0, 1.6]. The APEC model consists of 35 temperature components ranging from

1.2×105 K to 2.3×108 K with an emission measure (EM =
∫

nenHdV ) distribution EM(T ) ∝

T 1/2 for T > 107 K and EM(T ) ∝ T 3/2 for T < 107 K, i.e., the typical emission measure

distribution for a plasma cooling mainly through thermal bremsstrahlung for T > 107 K

and mainly through line emission below 107 K. To make sure that the model correctly

reproduces the ultraviolet and far ultraviolet flux observed in EX Hya, we added an additional

temperature component at T = 3.1 × 105 K with an emission measure of 2 × 1052 cm−3 to

produce the O VI lines measured by ORFEUS II (Mauche 1999).

Consistent with Eisenbart et al. (2002), we set the total luminosity L = 1032 erg s−1 be-

tween 1 Ryd and 1000 Ryd, which results in luminosities of 13, 3, 1.5, and 1.9×10−11 erg cm−2

s−1 in the ≥ 1.0 keV, 0.28–1.0 keV, 0.067–0.028 keV, and 0.0136–0.067 keV bands, respec-

tively. The ionization parameter log ξ was sampled from −4 to 4 in steps of ∆ log ξ = 0.25,

R was fixed at 1010 cm (see § 3.4), and the density n varied accordingly. The choices of

R and n are arbitrary since it is only ξ that detemines the ionization fraction. Since we

are interested only in the optically thin case, we adopted the ionization balance of the first

’zone/shell’ in the CLOUDY calculations, i.e, the inner edge of the absorber.
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3.4. Fit Results

To make the fitting process simpler we (1) normalize the light curves to one for φ98 ∈

[0.2, 0.4], where we find no appreciable absorption, (2) use bins 0.02×φ98 in size, (3) increase

the errors on the EUVE light curve by a factor of four, to make them similar to those of the

Chandra light curves (so that they do not dominate the fitting process), and (4) removed

the white dwarf eclipse from the light curves, i.e., we do not fit between φ98 ∈ [0.98, 1.04].

Figure 2 shows the result of fitting the amount of absorption (Eq. 1) to the Chandra

and EUVE light curves simultaneously, for each φ98 bin, using as free parameters the column

density NH and the temperature T for the CI case and the ionization parameter ξ for the

PI case. The figure clearly shows that, for the region where the absorption is appreciable,

i.e., φ98 ∈ [0.6, 1.0], (1) the variation of the column density can be described roughly by a

Gaussian in φ98 and (2) T and ξ decline roughly linearly with φ98 (possibly hitting a floor

around φ98 = 0.85, after which they remain fairly constant). The fits are poorly determined

outside the φ98 ∈ [0.6, 1.0] interval due to the fact that no appreciable absorption is present,

so we do not show the fit parameters in this region.

Based on the trends shown in Figure 2 we fitted T and ξ by a linear function:

log X(φ98) = c0 + c1φ98, (2)

where X represents either T or ξ, and fitted NH by a Gaussian function:

NH(φ98) = NH,0 exp
[

−(φ98 − φNH
)2/2σ2

NH

]

(3)

Table 2 summarizes the results of the fits, which are shown in Figure 3. While these simple

models do not fit the light curves perfectly, they reproduce, with a minimum number of

degrees of freedom, the essential features of the light curves, including the change of φ98,min

with wavelength.

Note that we find a maximum column density NH,0 ∼ 4 × 1021 cm−2, which is a factor

four higher than most values obtained in previous studies (e.g., Hurwitz et al. 1997). This

difference is readily explained by the fact that the other studies assumed neutral absorbers,

while our model of the Chandra and EUVE light curves requires a partially ionized absorber.

Specifically, we require an absorber with no H I or He I opacity; in our model, most of the

absorption in the EUVE wavelength band is due to He II.

Given the parameters inferred for our fits to NH(φ98), it is possible to draw a schematic

picture of the location and extent of the absorbing material in EX Hya. In the sketch shown

in Figure 4, we have assumed that the inner edge of the disk lies at Rin ∼ 0.7×1010 cm (Allan

et al. 1998) and that the outer edge of the disk lies at Rout ∼ 1.5×1010 cm (75% of the white
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dwarf Roche lobe radius of 2 × 1010 cm, Beuermann et al. 2003; Hoogerwerf et al. 2004).

The absorber can be drawn on this figure if we assume that its density n = NH(φ98)/D(φ98)

is constant with φ98 and its thickness D(φ98) = R2 − R1, where R1 ≥ Rin and R2 ≤ Rdisk.

Two representative absorbers are shown in the figure for R1 = Rin and n = 5 × 1011 cm−3

and R1 = 0.75 Rdisk and n = 1 × 1012 cm−3.

In the PI case, additional constraints are imposed on the absorber by the definition

of the ionization parameter. Eliminating n between the relationships ξ = L/nR2 ∼ 3 and

NH = nD ∼ 3 × 1021 cm−2 gives D10 ∼ 0.9 R2

10
, where D and R are expressed in units of

1010 cm. This is further constrained by the requirement D/R � 1 so that the ionization

parameter does not vary significantly from the front to the back of the absorber. These

constraints are satisfied only if the absorber is very near the white dwarf: for R ≤ 0.3 Rin,

D/R <
∼ 0.3 and n >

∼ 4×1012 cm−3. However, this analysis requires that the PI absorber be

optically thin to the ionizing radiation, while Figure 3 shows that during the dip the EUVE

light curve is extinguished by approximately 95%, corresponding to an optical depth τ ≈ 3.

3.5. Optically Thick PI Model

To allow the possibility of an optically thick PI absorber, we ran a set of full CLOUDY

models to account for the dilution of the radiation field and the resulting change of the

ionization balance with depth into the absorber. The dashed curve in the middle panel

of Figure 3 shows the full CLOUDY light curves based on our best fit paramaters of the

optically thin model for R = 1010 cm. This clearly shows that including the optical depth

effects and physical size of the absorber results in more absorption, particularly at the longer

wavelengths. We are able to produce full CLOUDY models that fit our light curves as well

as we did for the CI and optically thin PI models, but these models require that the inner

radius of the absorber be at R ∼ 0.4 × 1010 cm, i.e., smaller than the inner radius of the

accretion disk. While the accretion curtain is a source of absorption at this close distance to

the white dwarf, this absorption should be visible only on the white dwarf period and not

on the binary period. We thus conclude that the white dwarf in EX Hya is not luminous

enough to ionize the absorber by photoionization processes alone.

3.6. Heating of the Absorber

We can solve the problems with the PI model described above by imposing a base

temperature to the absorber of order 105 K. This ensures that no H I and He I and almost
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no He II is present in the absorber, as is required by the ionization balances found by the CI

and PI models. This is crucial, since even small traces of these ions result in large amounts

of absorption in the EUVE waveband. Since this base temperature is significantly higher

than the temperature of the outer disk (3000–7000 K, Frank et al. 1981; Eisenbart et al.

2002), we conclude that viscous heating alone is insufficient to keep the absorber hot. Other

sources of heat, such as shocks due to the interaction between the accretion stream and the

accretion disk, are needed.

4. Discussion

As shown above, the dominant source of ionizing radiation in EX Hya, the white dwarf

and accretion columns, are not sufficiently luminous to ionize the accretion disk bulge by

photoionization alone. Therefore, the bulge must be ionized through a different process and,

assuming that it is in, or close to, CI equilibrium, its temperature is of order log T (K) ∼ 5.3

or T ∼ 200, 000 K. Furthermore, to reproduce the shift of φ98,min with wavelength, the bulge

must have a temperature gradient that steadily decreases from log T (K) ∼ 5.5 at φ98 ∼ 0.6

to log T (K) ∼ 5.2 at φ98 ∼ 0.9. We speculate that this temperature gradient is caused by

the interaction, e.g., shocks, between the stream of accreting material from the companion

and the accretion disk.

Our simple analysis in § 3.4 places the location of this interaction region on the disk

at φ98 ≈ 0.6–1.0 corresponding to a range of angles of approximately 0◦–130◦ from the

line joining the two stars. The location and shape of the absorber is uncertain because

we measure only the column density along the line of sight, although Figure 4 shows two

possibilities that are consistent with our data. In interpreting this figure, it must be kept in

mind that what we are seeing in the X-ray and EUV wavelength bands is only that portion

of the accretion bulge that rises an angle of 13◦ above the orbital plane.

Hydrodynamical simulations of close binary systems show that the inflowing material

from the companion star forms a spiral-like structure in the accretion disk instead of the

canonical hot spot on the edge of the disk (e.g., Bisikalo et al. 1998; Makita, Miyawaki,

& Matsuda 2000; Sato, Sawada, & Ohnishi 2003). The location of such spiral structures

appears to coincide with the position of the EX Hya absorber. Furthermore, simulations show

that shocks occur in regions where the inflowing material interacts with the accretion disk.

These shocks might be responsible for the heating needed in our EX Hya absorber model.

Unfortunately, most of the hydrodynamic simulations do not include the effects of heating

and cooling on the accretion disk structure (but see, Sato et al. 2003). The EX Hya results

presented in this paper provide an excellent constraint for new hydrodynamic simulations of
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close binary systems.

Visibility of Absorber

A hot absorber like the one in EX Hya will generate its own emission, mainly in the UV

band, the strength of which is given by the emission measure. Unfortunately, we know only

the column density and temperature along a slice through the absorber. It is unknown

what the total volume of the absorber is and whether the temperature distribution is similar

throughout the absorber. Furthermore, the emission measure depends on the density of the

absorber, which is also an unknown. Estimates and assumptions for all these quantities can

be made, but the result will be highly unreliable. To our knowledge there is no mention in

the literature that the absorber has ever been observed in emission.

We do however, see evidence of the absorber in ORFEUS II data (Mauche 1999) and,

more clearly, in FUSE data, for which the analysis is in progress, as line absorption features

of the O VI λλ1032, 1038 doublet lines and the C III λ977, λ1175 lines at binary phases

0.6 < φ98 < 1.0. The absorption features are not visible at other binary phases. This range

of binary phases agrees well with the absorber described in this paper. Furthermore, the fact

the O VI shows line absorption confirms that the absorber contains highly ionized oxygen.

Short Wavelength Absorption

Figure 3 shows that both the CI and PI model fits do not perform very well in the 1–5 Å

band and the 5–10 Å band: both models tend to underpredict the amount of absorption.

We found that adding a second absorber to our model improves the fit: it lowers the reduced

χ2 from ∼ 4 to ∼ 2 (see bottom panel Fig. 3). The second absorber was modeled with

a Gaussian for the column density and a single temperature or ionization parameter. The

results are that this absorber needs to be highly ionized [log T (K) ∼ 7 or log ξ ∼ 2.7] and

have a large column log NH(cm−3) ∼ 23. Using similar arguments as in § 3.4 we can constrain

the position of the absorber, in the PI case, to be very close (R < 4× 108 cm) to the source

of the ionizing emission, i.e., basically at the shock front. It is hard to understand why

this feature would appear on the binary period rather than the white dwarf period. If real,

the second absorber is most likely to be near the inner edge of the accretion disk, somehow

uncoupled to the magnetic field of the white dwarf. A long observation of EX Hya could

confirm the existence of a second absorber and perhaps better constrain its location.
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5. Conclusions

We report a new feature in the binary light curves of the magnetic cataclysmic variable

EX Hya. Based on Chandra HETG and EUVE DS data we have shown that the phase of the

minimum in the broad modulation, associated with the bulge or hot spot on the accretion

disk, increases with wavelength. Collisional ionization and photoionization models explain

this characteristic as a change in ionization state of the bulge plasma with binary phase.

However, the ionizing radiation originating on the white dwarf and its accretion columns is

insufficient to account for the ionization state of the bulge. Moreover, the required ionization

state also excludes viscous heating in the accretion disk as the main source of ionization.

We thus conclude that the bulge plasma is heated by shocks resulting from the interaction

between the inflowing material from the companion and the accretion disk.
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Fig. 1.— EX Hya binary light curves in the five Chandra first-order HETG wavelength

bands. The average error of each light curve is indicated in the lower left corner of each

panel. Each panel also shows, as a solid line, the model fit to the data discussed in § 3.2,

with the fit parameters in Table 1.
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Fig. 2.— Left (right) panels The best fitting NH and T (ξ) for the collisional (photo) ioniza-

tion model. The vertical dotted lines in the lower panels indicate the region for which the

absorption is appreciable and can be fitted reliably. The open circles denote the temperature

(ionization parameter) for the fit. The open triangles denoted the temperature of the gas

due to heating by the PI process. The solid curves show the best fit temperature (ionization

parameter) model (see § 3.4).
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Fig. 3.— EX Hya binary light curves in the four Chandra HETG and EUVE DS wavelength

bands. The dotted vertical lines separate the different wavelength bands. Top panel shows

the best fitting CI model and middle panel shows the best fitting PI model. The dashed

line in the middle panel shows the light curves predicted by the full CLOUDY calculation

discussed in § 3.5. Bottom panel shows the light curve produced by the CI model with an

additional absorber.
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Fig. 4.— Schematic of the EX Hya binary, showing the companion, the white dwarf (small

solid circle), the Roche limit of the white dwarf (light gray curve), the inner and outer disk

radii (circles), the ballistic stream (dotted curve), and the location of the absorber for the

two cases discussed in § 3.4. The binary phases are indicated, as is the scale.
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Table 1. Binary Light Curve Fit

Parameters

Broad Modulation Eclipse

Wavelength Range Centroid FWHM Depth Centroid FWHM Deficit

(Å) (φ98) (φ98) (%) (φ98) (φ98) (%)

1–20 0.784±0.002 0.250±0.006 26.3±0.5 0.995±0.001 0.024±0.002 12.8±0.4

1– 5 0.769±0.015 0.354±0.050 10.7±1.0 0.994±0.001 0.020±0.004 17.5±1.2

5–10 0.775±0.003 0.244±0.009 25.0±0.7 0.996±0.001 0.024±0.003 11.9±0.6

10–15 0.790±0.003 0.214±0.007 40.3±1.0 0.992±0.002 0.025±0.005 12.2±0.9

15–20 0.811±0.004 0.232±0.012 52.0±1.9 1.000±0.002 0.017±0.008 14.4±2.6

Table 2. Collisional and Photoionization

Model Parameters

Including second absorber

CI PI CI PI

log NH,0 21.59(1) 21.67(1) 21.50(1) 21.55(2)

φNH
0.786(3) 0.782(3) 0.790(3) 0.764(4)

σNH
0.108(3) 0.108(2) 0.094(2) 0.097(2)

c0 6.13(2) 2.15(3) 6.27(1) 3.34(3)

c1 0.97(4) 1.99(4) 1.23(2) 3.66(5)

log N̂H,0 22.79(8) 23.1(1)

φ
N̂H

0.85(1) 0.87(1)

σ
N̂H

0.23(2) 0.22(2)

c3 7.04(4) 2.69(7)

χ2/ν 4.15 3.79 2.32 2.09


